Algorithms for NLP

Automatic Speech Recognition

Yulia Tsvetkov – CMU

Slides: Preethi Jyothi – IIT Bombay, Dan Klein – UC Berkeley

Skip-gram Prediction

Skip-gram Prediction

Training data

```
W_{t}, W_{t-2}

W_{t}, W_{t-1}

W_{t}, W_{t+1}

W_{t}, W_{t+2}

...
```


Skip-gram Prediction

How to compute p(+|t,c)?

FastText: Motivation

Much'ananayakapushasqakupuniñataqsunamá

Much'a -na -naya -ka -pu -sha -sqa -ku -puni -ña -taq -suna -má

"So they really always have been kissing each other then"

```
Much'a to kiss
       expresses obligation, lost in translation
-na
-naya expresses desire
       diminutive
       reflexive (kiss *eachother*)
      progressive (kiss*ing*)
       declaring something the speaker has not personally witnessed
-sqa
-ku
       3rd person plural (they kiss)
-puni definitive (really*)
-ña
       always
       statement of contrast (...then)
-suna expressing uncertainty (So...)
-má
       expressing that the speaker is surprised
```

	Singular+neut	Plural+neut	
Nominative	предложение	предложения	sentence (s)
Genitive	предложения	предложений	(of) sentence (s)
Dative	предложению	предложениям	(to) sentence (s)
Accusative	предложение	предложения	sentence (s)
Instrumental	предложением	предложениями	(by) sentence (s)
Prepositional	предложении	предложениях	(in/at) sentence (s)

Subword Representation

```
skiing = {^skiing$, ^ski, skii, kiin, iing, ing$}
```

FastText

ELMO

Announcements

- HW1 due Sept 24
- HW2 out Oct 2

Automatic Speech Recognition (ASR)

- Automatic speech recognition (or speech-to-text) systems transform speech utterances into their corresponding text form, typically in the form of a word sequence
- Downstream applications of ASR
 - Speech understanding
 - Audio information retrieval
 - Speech translation
 - Keyword search

What ASR is Not

Slide credit: Preethi Jyothi

ASR is the Front Engine

How does Siri work?

Slide credit: Preethi Jyothi

Why is ASR a Challenging Problem?

Style:

- Read speech vs spontaneous (conversational) speech
- Command & control vs continuous natural speech

Speaker characteristics:

- Rate of speech, accent, prosody (stress, intonation), speaker age, pronunciation variability even when the same speaker speaks the same word
- Channel characteristics:
 - Background noise, room acoustics, microphone properties, interfering speakers

Task specifics:

Vocabulary size (very large number of words to be recognized),
 language-specific complexity, resource limitations

Slide credit: Preethi Jyothi

The very first ASR

RADIO REX (1922)

Slide credit: Preethi Jyothi

SHOEBOX (IBM, 1962)

1 word

Freq. detector

HARPY (CMU, 1976)

1 word 16 words

Freq. Isolated word detector recognition

1 word 16 words 1000 words

Freq. Isolated word Connected detector recognition speech

Statistical ASR: The Noisy Channel

Mode

~80s

Fred Jelinek 1932-2010

Acoustic model

Language model:

Distributions over sequences of words (sentences)

1 word 16 words 1000 words

Freq. Isolated word Connected detector recognition speech

DEEP NEURAL NETWORK BASED SYSTEMS (>2010)

1 word 16 words 1000 words 10K+ words

Freq. Isolated word Connected LVCSR detector recognition speech systems

Evaluating an ASR system

- Word/Phone error rate (ER)
 - uses the Levenshtein distance measure: What are the minimum number of edits (insertions/deletions/substitutions) required to convert W* to W_{ref}?

$$ER = \frac{\sum_{j=1}^{N} Ins_j + Del_j + Sub_j}{\sum_{j=1}^{N} \ell_j}$$

```
    Word Error Rate =
    100 (Insertions+Substitutions + Deletions)
    Total Word in Correct Transcript
    Alignment example:
    REF: portable **** PHONE UPSTAIRS last night so
    HYP: portable FORM OF STORES last night so
    Eval I S S
    WER = 100 (1+2+0)/6 = 50%
```


NIST ASR Benchmark Test History

What's Next?

1 word 16 words 1000 words 10K+ words 1M+ words

Freq. Isolated word Connected LVCSR DNN-based detector recognition speech systems systems

What's Next?

- accented speech
- low-resource
- speakerseparation
- short queries
- etc.

https://www.youtube.com/watch?v=gNx0huL9qsQ

Link credit: Preethi Jyothi

In our course

Statistical ASR

ASR Topics

In our course

Acoustic Analysis

What is speech - physical realisation

- Waves of changing air pressure
- Realised through excitation from the vocal cords
- Modulated by the vocal tract, the articulators (tongue, teeth, lips)
- Vowels: open vocal tract
- Consonants are constrictions of vocal tract

- Representation:
 - acoustics
 - linguistics

Acoustics

Simple Periodic Waves of Sound

- Y axis: Amplitude = amount of air pressure at that point in time
- X axis: Time
- Frequency = number of cycles per second.
 - 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Complex Waves: 100Hz+1000Hz

Spectrum

Frequency components (100 and 1000 Hz) on x-axis

"She just had a baby"

What can we learn from a wavefile?

- No gaps between words (!)
- Vowels are voiced, long, loud
- Voicing: regular peaks in amplitude
- When stops closed: no peaks, silence
- Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
- Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
- Fricatives like [sh]: intense irregular pattern; see .33 to .46

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Spectrum of an Actual Speech

time

1.6

Types of Graphs

Speech in a Slide

Frequency gives pitch; amplitude gives volume

Frequencies at each time slice processed into observation vectors

Articulation

Articulatory System

Sagittal section of the vocal tract (Techmer 1880) Text from Ohala, Sept 2001, from Sharon Rose slide

Space of Phonemes

	LAE	BIAL	CORONAL				DORSAL			RADICAL		LARYNGEAL
	Bilabial	Labio- dental	Dental	Alveolar	Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	СЭ	k g	q G		7	?
Fricative	φβ	f v	θð	s z	∫ 3	şζ	çj	хү	χ	ħ c	НС	h h
Approximant		υ		J		ન	j	щ	R R	1	1	11 11
Trill	В			r					R		Я	
Tap, Flap		V		ſ		r						
Lateral fricative				łţ		t	Х	Ł				
Lateral approximant				1		l	λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Place

Places of Articulation

Figure thanks to Jennifer Venditti

Labial place

Coronal place

Dorsal Place

Space of Phonemes

	LAE	BIAL	CORONAL				DORSAL			RADICAL		LARYNGEAL
	Bilabial	Labio- dental	Dental	Alveolar	Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	СЭ	k g	q G		7	?
Fricative	φβ	f v	θð	s z	∫ 3	şζ	çj	хү	χ	ħ c	НС	h h
Approximant		υ		J		ન	j	щ	R R	1	1	11 11
Trill	В			r					R		Я	
Tap, Flap		V		ſ		r						
Lateral fricative				łţ		t	Х	Ł				
Lateral approximant				1		l	λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Manner

Manner of Articulation

- In addition to varying by place, sounds vary by manner
- Stop: complete closure of articulators, no air escapes via mouth
 - Oral stop: palate is raised (p, t, k, b, d, g)
 - Nasal stop: oral closure, but palate is lowered (m, n, ng)
- Fricatives: substantial closure, turbulent: (f, v, s, z)
- Approximants: slight closure, sonorant: (I, r, w)
- Vowels: no closure, sonorant: (i, e, a)

Space of Phonemes

	LAE	BIAL	CORONAL				DORSAL			RADICAL		LARYNGEAL
	Bilabial	Labio- dental	Dental	Alveolar	Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	СЭ	k g	q G		7	?
Fricative	φβ	f v	θð	s z	∫ 3	şζ	çj	хү	χ	ħ c	НС	h h
Approximant		υ		J		ન	j	щ	R R	1	1	11 11
Trill	В			r					R		Я	
Tap, Flap		V		ſ		r						
Lateral fricative				łţ		t	Х	Ł				
Lateral approximant				1		l	λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Vowels

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Seeing Formants: the Spectrogram

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Pronunciation is Context Dependent

- [bab]: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- [dad]: first formant increases, but F2 and F3 slight fall
- [gag]: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

Dialect Issues

- Speech varies from dialect to dialect (examples are American vs. British English)
 - Syntactic ("I could" vs. "I could do")
 - Lexical ("elevator" vs. "lift")
 - Phonological
 - Phonetic
- Mismatch between training and testing dialects can cause a large increase in error rate

Acoustic Analysis

Frame Extraction

A frame (25 ms wide) extracted every 10 ms

Preview of feature extraction for each frame:

- 1) DFT (Spectrum)
- 2) Log (Calibrate)
- 3) another DFT (!!??)

Why these Peaks?

• Articulation process:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

Vowel [i] at increasing pitches

Figures from Ratree Wayland

Deconvolution / The Cepstrum

Deconvolution / The Cepstrum

Final Feature Vector

- 39 (real) features per 25 ms frame:
 - 12 MFCC features
 - 12 delta MFCC features
 - 12 delta-delta MFCC features
 - 1 (log) frame energy
 - 1 delta (log) frame energy
 - 1 delta-delta (log frame energy)

So each frame is represented by a 39D vector

Acoustic Analysis

Phonetic Analysis

CMU Pronunciation Dict

ABBREVIATE AHBRIYVIYEYT

ABBREVIATED AHBRIYVIYEYTAHD ABBREVIATED(2) AHBRIYVIYEYTIHD

ABBREVIATES AHBRIYVIYEYTS

ABBREVIATION AHBRIYVIYEYTIHNG
ABBREVIATIONS AHBRIYVIYEYSHAHN

ABBREVIATIONS AHBRIYVIYEYSHAHNZ

ABBRUZZESE AABRUWTSEYZIY

ABBS AEBZ ABBY AEBIY

ABCO AE B K OW

ABCOTEK AE B K OW T EH K ABDALLAH AE B D AE L AH ABDALLAH AE B D AE L AH

Speech Model

Acoustic Modeling

Vector Quantization

- Idea: discretization
 - Map MFCC vectors onto discrete symbols
 - Compute probabilities just by counting
- This is called vector quantization or VQ
- Not used for ASR any more
- But: useful to consider as a starting point

Next class: HMMs for Continuous Observations

- Feature vectors are real-valued
- Solution 1: discretization
- Solution 2: continuous emissions
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of multivariate Gaussians

